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Introduction
We study the stochastic FitzHugh-Nagumo equation, modelling

the dynamics of neuronal action potential in the axon of a neuron.

FIGURE 1: The structure of a neuron

The general model is a slow-fast system of stochastic differential
equation: 

εdxt =

(
xt −

x3t
3
+ yt

)
dt +

√
εσ1 dW

(1)
t

dyt = (a− xt) dt + σ2 dW
(2)
t

(1)

Here x is the fast variable and represents the membrane potential, y
is the slow variable, a is a positive parameter, ε is a small positive pa-
rameter (ε << 1), σ1 and σ2 are small positive parameters (σ << 1)
representing the noise amplitude of the independant Brownian Mo-
tions W (1)

t and W
(2)
t .

Deterministic equation

We consider the deterministic equation associated to the SDE (1):εẋ = x− x3

3
+ y

ẏ = a− x
(2)

First of all, we study the equilibrium point P of the equation (2)
given by (x∗, y∗) = (a, a3 − a). It is a Hopf bifurcation point. Let

δ = (3a2 − 1)/2, (3)

such that δ is small if the equilibrium point is near the Hopf bifurca-
tion point. We have three cases:

• if δ >
√
ε: two real negative eigenvalues: P is a stable node.

• if 0 < δ <
√
ε: two real eigenvalues with one positive: P is a

stable focus.

• if −
√
ε < δ < 0: two complex eigenvalues with real part neg-

ative: P is an unstable focus and we have a limit cycle.

FIGURE 2: Three orbits of the deterministic FitzHugh-Nagumo
equations for ε = 0.05

Spikes distribution

Now we add noise to the equation (2), we have four regimes:

• unstable focus : loops near the limit cycle.

• stable node or focus :

- weak noise : loops around the fixed point.
- intermediate noise : loops around the fixed point and exit to
loop on the limit cycle.
- strong noise : loop near the limit cycle.

FIGURE 3: An orbit of the stochastic FitzHugh-Nagumo equa-
tions

Finally, we fix a and we plot the membrane potential x in function
of the time t. We observe three different main regimes following the
values of δ and σ:

• numerous and regular spikes : the trajectory stay only a short
time around the equilibrium point before exiting.

• spike or a cluster of spikes from time to time. That means
the trajectory stay some times around the equilibrium point before
exiting and when it comes back, it can sometimes exit quickly
• rare isolated spikes.
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FIGURE 4: Phase diagram of the stochastic FitzHugh-Nagumo
equations (see [2])

We want to study the probability distribution of small amplitude
oscillation (SAO) betwenn two spikes in these different regimes.

Number of SAOs

We first define the integer-valued random variable N , couting the
number of small-amplitude oscillations between two consecutive
spikes.
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FIGURE 5: Definition of the number N of SAOs. Here N = 2

Let D ⊂ R2, a bounded set containing the stationary point P and
a piece of separatrix. If the sample path (xt, yt) leave D, we con-
sider we have a spike. A simple definition of N is the number
of times the sample path turn around P before leaving D. Let
(R1, R2, . . . , RN ) the successive intersections of the path with F
separated by rotation around P . It ends with the exit from D. The
sequance (Rn)n forms a substochastic Markov chain with kernel

K(R,A) = P
{
Rn+1 ∈ A

∣∣ Rn = R
}
, R ∈ F , A ⊂ F (4)

The kernel K admits a principal eigenvalue λ0. There exists a prob-
ability measure π0 such that π0K = λ0K.
Our first main result gives qualitative properties of the distribution of
N valid in all parameter regimes.
Theorem 1 (General properties of N )

Assume that σ1, σ2 > 0. Then for any initial distribution µ0 of R0
on the curve F ,

• the kernel K admits a quasi-stationary distribution π0;

• the associated principal eigenvalue λ0 = λ0(ε, δ, σ1, σ2) is
strictly smaller than 1;

• the random variable N is almost surely finite;
• the distribution of N is “asymptotically geometric”, that is,

lim
n→∞

Pµ0
{
N = n + 1

∣∣ N > n
}
= 1− λ0 ; (5)

• Eµ0

{
rN
}

< ∞ for r < 1/λ0 and thus all moments

Eµ0

{
Nk
}

of N are finite.
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FIGURE 6: Histograms of the distributions of the SAO number
N for µ̃/σ̃ = −0.5 and 0.1

If the initial distribution µ0 is equal to π0, the random variable Rn has
the law µn = λn0π0, and N follows an exponential law of parameter
1− λ0 :

Pπ0
{
N = n

}
= λn−1

0 (1− λ0) and Eπ0
{
N
}
=

1

1− λ0
.

(6)
In general, however, the initial distribution µ0 after a spike will be
far from the QSD π0, and thus the distribution of N will only be
asymptotically geometric.

Theorem 2 (Weak-noise regime)
Assume that ε and δ/

√
ε are sufficiently small. Then there exists

a constant κ > 0 such that for σ21 + σ22 6 (ε1/4δ)2/ log(
√
ε/δ), the

principal eigenvalue λ0 satisfies

1− λ0 6 exp

{
−κ

(ε1/4δ)2

σ21 + σ22

}
. (7)

Furthermore, for any initial distribution µ0 of incoming sample
paths, the expected number of SAOs satisfies

Eµ0
{
N
}
> C(µ0) exp

{
κ
(ε1/4δ)2

σ21 + σ22

}
. (8)

Here C(µ0) is the probability that the incoming path hits F above
the separatrix.

Proposition

Let z1t the distance to sepratrix (linearised) and 2L2 = γ|log(c−µ̃)|
for some γ, c− > 0. Then for any H ,

P
{
z1T 6 −H

}
= Φ

(
−π1/4

µ̃

σ̃

[
1 +O

(
(H + z0)µ̃

γ−1
)])

, (9)

where σ̃2 = σ̃21 + σ̃22 = 3ε−3/2(σ21 + σ22), µ̃ = δ/ε − σ̃21, and
Φ(x) =

∫ x
−∞ e−u2/2 6u/

√
2π is the distribution function of the

standard normal law.

Choosing γ large enough, we expect that

1− λ0 ' Φ

(
−π1/4

µ̃

σ̃

)
= Φ

−
(πε)1/4(δ − σ21/ε)√

σ21 + σ22

 . (10)
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FIGURE 7: Comparison of Φ
(
−π1/4µ̃/σ̃

)
with P

{
N = 1

}
and

1/E
{
N
}

.

We can identify three regimes, depending on the value of µ̃/σ̃ :

1. Weak noise : µ̃ � σ̃, which in original variables translates into√
σ21 + σ22 � ε1/4δ, λ0 is exponentially close to 1, and thus spikes

are separated by long sequences of SAOs.

2. Strong noise : µ̃ � −σ̃, which implies µ � σ̃2, and in orig-
inal variables translates into

√
σ21 + σ22 � ε3/4. Then λ0 is ex-

ponentially small, of order e−(σ2
1+σ

2
2)/ε

3/2
. With high probability,

no complete SAO between consecutive spikes, i.e., the neuron is
spiking repeatedly.

3. Intermediate noise : |µ̃| = O(σ̃), which translates into ε1/4δ 6√
σ21 + σ22 6 ε3/4. Then the mean number of SAOs is of order 1.

In particular, when σ1 =
√
εδ, µ̃ = 0 and thus λ0 is close to 1/2.

FIGURE 8: Examples of times series of (t, xt)

The transition from weak to strong noise is gradual. There is no
clear-cut transition at σ1 =

√
εδ, the only particularity of this param-

eter value being that λ0 is close to 1/2.

References
[1] N. BERGLUND and D. LANDON Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model, Preprint, arXiv:1105.1278, 2011.

[2] C. MURATOV and E. VANDEN-EIJNDEN. Noised-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit circle, Chaos, 18, 2008.


