Mixed-Mode Oscillations in FitzHugh Nagumo Model

Introduction

We study the stochastic FitzHugh-Nagumo equation, modelling the dynamics of neuronal action potential in the axon of a neuron.

Figure 1: The structure of a neuron
The general model is a slow-fast system of stochastic differential equation:

$$
\left\{\begin{array}{l}
\varepsilon d x_{t}=\left(x_{t}-\frac{x_{t}^{3}}{3}+y_{t}\right) d t+\sqrt{\varepsilon \sigma_{1}} d W_{t}^{(1)} \tag{1}\\
d y_{t}=\left(a-x_{t}\right) d t+\sigma_{2} d W_{t}^{(1)}
\end{array}\right.
$$

Here x is the fast variable and represents the membrane potential, y is the slow variable, a is a positive parameter, ε is a small positive pa$\operatorname{rameter}(\varepsilon \ll 1), \sigma_{1}$ and σ_{2} are small positive parameters ($\sigma \ll 1$) representing the noise amplitude of the independant Brownian Motions $W_{t}^{(1)}$ and $W_{t}^{(2)}$

Deterministic equation

We consider the deterministic equation associated to the SDE (1):

$$
\left\{\begin{array}{l}
\varepsilon \dot{x}=x-\frac{x^{3}}{3}+y \tag{2}\\
\dot{y}=a-x
\end{array}\right.
$$

First of all, we study the equilibrium point P of the equation (2) given by $\left(x^{*}, y^{*}\right)=\left(a, a^{3}-a\right)$. It is a Hopf bifurcation point. Let

$$
\begin{equation*}
\delta=\left(3 a^{2}-1\right) / 2 \tag{3}
\end{equation*}
$$

such that δ is small if the equilibrium point is near the Hopf bifurcation point. We have three cases:

- if $\delta>\sqrt{\varepsilon}$: two real negative eigenvalues: P is a
\bullet if $0<\delta<\sqrt{\varepsilon}$: two real eigenvalues with one positive: P is a stable focus.
\bullet if $-\sqrt{\varepsilon}<\delta<0$: two complex eigenvalues with real part negative: P is an unstable focus and we have a limit cycle.

Figure 2: Three orbits of the deterministic FitzHugh-Nagumo equations for $\varepsilon=0.05$

Spikes distribution

Now we add noise to the equation (2), we have four regimes:

- unstable focus : loops near the limit cycle.
- stable node or focus :
- weak noise : loops around the fixed point.
- intermediate noise : loops around the fixed point and exit to loop on the limit cycle.
- strong noise : loop near the limit cycle.

Figure 3: An orbit of the stochastic FitzHugh-Nagumo equations

Finally, we fix a and we plot the membrane potential x in function of the time t. We observe three different main regimes following the values of δ and σ

- numerous and regular spikes : the trajectory stay only a short time around the equilibrium point before exiting.

Damien LANDON Nils BERGLUND
MAPMO, Université d'Orléans, France.

- spike or a cluster of spikes from time to time. That means the trajectory stay some times around the equilibrium point before exiting and when it comes back, it can sometimes exit quickly - rare isolated spikes.

Figure 4: Phase diagram of the stochastic FitzHugh-Nagumo equations (see [2])
We want to study the probability distribution of small amplitude oscillation (SAO) betwenn two spikes in these different regimes.

Number of SAOs

We first define the integer-valued random variable N, couting the number of small-amplitude oscillations between two consecutive spikes.

Figure 5: Definition of the number N of SAOs. Here $N=2$
Let $\mathcal{D} \subset \mathbb{R}^{2}$, a bounded set containing the stationary point P and a piece of separatrix. If the sample path $\left(x_{t}, y_{t}\right)$ leave \mathcal{D}, we consider we have a spike. A simple definition of N is the number of times the sample path turn around P before leaving \mathcal{D}. Let $\left(R_{1}, R_{2}, \ldots, R_{N}\right)$ the successive intersections of the path with \mathcal{F} separated by rotation around P. It ends with the exit from \mathcal{D}. The sequance $\left(R_{n}\right)_{n}$ forms a substochastic Markov chain with kernel
$K(R, A)=\mathbb{P}\left\{R_{n+1} \in A \mid R_{n}=R\right\}, R \in \mathcal{F}, A \subset \mathcal{F} \quad$ (4) The kernel K admits a principal eigenvalue λ_{0}. There exists a probability measure π_{0} such that $\pi_{0} K=\lambda_{0} K$.
Our first main result gives qualitative properties of the distribution of N valid in all parameter regimes.
Theorem 1 (General properties of \boldsymbol{N})
Assume that $\sigma_{1}, \sigma_{2}>0$. Then for any initial distribution μ_{0} of R_{0} on the curve \mathcal{F},

- the kernel K admits a quasi-stationary distribution π_{0};
- the associated principal eigenvalue $\lambda_{0}=\lambda_{0}\left(\varepsilon, \delta, \sigma_{1}, \sigma_{2}\right)$ is strictly smaller than 1 ;
- the random variable N is almost surely finite;
- the distribution of N is "asymptotically geometric", that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}^{\mu_{0}}\{N=n+1 \mid N>n\}=1-\lambda_{0} \tag{5}
\end{equation*}
$$

$\bullet \mathbb{E}^{\mu_{0}}\left\{r^{N}\right\}<\infty$ for $r<1 / \lambda_{0}$ and thus all moments $\mathbb{E}^{\mu_{0}}\left\{N^{k}\right\}$ of N are finite.

Figure 6: Histograms of the distributions of the SAO number N for $\tilde{\mu} / \tilde{\sigma}=-0.5$ and 0.1
If the initial distribution μ_{0} is equal to π_{0}, the random variable R_{n} has the law $\mu_{n}=\lambda_{0}^{n} \pi_{0}$, and N follows an exponential law of parameter $1-\lambda_{0}$:

$$
\mathbb{P}^{\pi_{0}}\{N=n\}=\lambda_{0}^{n-1}\left(1-\lambda_{0}\right) \quad \text { and } \quad \mathbb{E}^{\pi_{0}}\{N\}=\frac{1}{1-\lambda_{0}}
$$

In general, however, the initial distribution μ_{0} after a spike will be far from the QSD π_{0}, and thus the distribution of N will only be asymptotically geometric.

Theorem 2 (Weak-noise regime)

Assume that ε and $\delta / \sqrt{\varepsilon}$ are sufficiently small. Then there exists a constant $\kappa>0$ such that for $\sigma_{1}^{2}+\sigma_{2}^{2} \leqslant\left(\varepsilon^{1 / 4} \delta\right)^{2} / \log (\sqrt{\varepsilon} / \delta)$, the principal eigenvalue λ_{0} satisfies

$$
\begin{equation*}
1-\lambda_{0} \leqslant \exp \left\{-\kappa \frac{\left(\varepsilon^{1 / 4} \delta\right)^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right\} \tag{7}
\end{equation*}
$$

Furthermore, for any initial distribution μ_{0} of incoming sample paths, the expected number of SAOs satisfies

$$
\begin{equation*}
\mathbb{E}^{\mu_{0}}\{N\} \geqslant C\left(\mu_{0}\right) \exp \left\{\kappa \frac{\left(\varepsilon^{1 / 4} \delta\right)^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right\} \tag{8}
\end{equation*}
$$

Here $C\left(\mu_{0}\right)$ is the probability that the incoming path hits \mathcal{F} above the separatrix.

Proposition

Let z_{t}^{1} the distance to sepratrix (linearised) and $2 L^{2}=\gamma\left|\log \left(c_{-} \tilde{\mu}\right)\right|$ for some $\gamma, c_{-}>0$. Then for any H,

$$
\mathbb{P}\left\{z_{T}^{1} \leqslant-H\right\}=\Phi\left(-\pi^{1 / 4} \frac{\tilde{\mu}}{\tilde{\sigma}}\left[1+\mathcal{O}\left(\left(H+z_{0}\right) \tilde{\mu}^{\gamma-1}\right)\right]\right)
$$

where $\tilde{\sigma}^{2}=\tilde{\sigma}_{1}^{2}+\tilde{\sigma}_{2}^{2}=3 \varepsilon^{-3 / 2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right), \tilde{\mu}=\delta / \varepsilon-\tilde{\sigma}_{1}^{2}$, and $\Phi(x)=\int_{-\infty}^{x} \mathrm{e}^{-u^{2} / 2} 6 u / \sqrt{2 \pi}$ is the distribution function of the standard normal law.
Choosing γ large enough, we expect that

$$
\begin{equation*}
1-\lambda_{0} \simeq \Phi\left(-\pi^{1 / 4} \frac{\tilde{\mu}}{\tilde{\sigma}}\right)=\Phi\left(-\frac{(\pi \varepsilon)^{1 / 4}\left(\delta-\sigma_{1}^{2} / \varepsilon\right)}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}}\right) \tag{10}
\end{equation*}
$$

Figure 7: Comparison of $\Phi\left(-\pi^{1 / 4} \tilde{\mu} / \tilde{\sigma}\right)$ with $\mathbb{P}\{N=1\}$ and $1 / \mathbb{E}\{N\}$.
We can identify three regimes, depending on the value of $\tilde{\mu} / \tilde{\sigma}$:

1. Weak noise : $\tilde{\mu} \gg \tilde{\sigma}$, which in original variables translates into $\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}} \ll \varepsilon^{1 / 4} \delta, \lambda_{0}$ is exponentially close to 1 , and thus spikes are separated by long sequences of SAOs.
2. Strong noise : $\tilde{\mu} \ll-\tilde{\sigma}$, which implies $\mu \ll \tilde{\sigma}^{2}$, and in original variables translates into $\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}} \gg \varepsilon^{3 / 4}$. Then λ_{0} is exponentially small, of order $\mathrm{e}^{-\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) / \varepsilon^{3 / 2}}$. With high probability, no complete SAO between consecutive spikes, i.e., the neuron is spiking repeatedly.
3. Intermediate noise : $|\tilde{\mu}|=\mathcal{O}(\tilde{\sigma})$, which translates into $\varepsilon^{1 / 4} \delta \leqslant$ $\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}} \leqslant \varepsilon^{3 / 4}$. Then the mean number of SAOs is of order 1 . In particular, when $\sigma_{1}=\sqrt{\varepsilon \delta}, \tilde{\mu}=0$ and thus λ_{0} is close to $1 / 2$.

FIGURE 8: Examples of times series of $\left(t, x_{t}\right)$
The transition from weak to strong noise is gradual. There is no clear-cut transition at $\sigma_{1}=\sqrt{\varepsilon \delta}$, the only particularity of this parameter value being that λ_{0} is close to $1 / 2$.

References

