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Introduction

We present here some results around the FitzHugh-Nagumo equa-
tion. The general model is a slow-fast system of stochastic differen-
tial equation:
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dyt = (α − βxt − γyt) dt

(FHN)

Herex is the fast variable and represents the membrane potential,y is
the slow variable,α, β andγ are postive parameters,ε is a small pos-
itive parameter (ε << 1), σ is a small positive parameter (σ << 1)
representing the noise amplitude of the Brownian MotionWt.

In a first part, we begin studying the case of deterministic equa-
tion associated to (FHN) withβ = 1 andγ = 0, following the value
of the parameterα.

In a second part, we give numerical simulations on the solution of
the equation (FHN) withβ = 1 andγ = 0, function of the values of
α andσ.

In a third part, we consider the equation (FHN) withβ = 0 and
γ = 1. This equation can be reduced to one-dimensional ODS. We
study this ODS in the neighborhood of the equilibrium point.

Deterministic equation

We consider the deterministic equation associated to the SDE
(FHN) in the caseβ = 1 andγ = 0:







εẋ = x − x3

3
+ y

ẏ = α − x
(1)

First of all, we study the equilibrium point of the equation (1) given

by (x∗, y∗) = (α,
α3

3
− α). It is a Hopf bifurcation point. We have

two cases:

• if α < α∗, the Jacobian matrix has two real eigenvalues. One
of them is positive and we have astable node.

epsilon=0.01,a=0.9

• if α ≥ α∗, the Jacobian matrix has two complex eigenvalues.
The real part is negative and we have astable focus.

epsilon=0.01,a=1.01

Spikes distribution

Now we add noise to the first line of the equation (1):
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(2)

Then we have four cases:

• node : loops near the limit cycle. There is no change to the
global solution.

• focus :

- weak noise :loops around the fixed point.

- stronger noise :loops around the fixed point and exit(right)
from the neighborhood of the fixed point and loop on the limit
cycle.

- strong noise :loop near the limit cycle (left).

σ = 0.05 σ = 0.005
epsilon= 0.01,sigma=0.05,a=1.01 epsilon= 0.01,sigma=0.006,a=1.01

epsilon= 0.01,sigma=0.05,a=1.01 epsilon= 0.01,sigma=0.006,a=1.01

Finally, we fix α and we plot the membrane potentialx in function
of the timet. We observe three different main regimes following the
value ofσ (see [2]) :

• numerous and regular spikes: the trajectory stay only a few
times around the equilibrium point before exiting (σ = 0.02).

epsilon= 0.01, sigma=0.02,a=1.01

• spike or a cluster of spikesfrom time to time. That mean
the trajectory stay some times around the equilibrium pointbe-
fore exiting and when it come back, it can sometimes exit quickly
(σ = 0.007)

epsilon= 0.01, sigma=0.007,a=1.01

• rare isolated spikes(σ = 0.001).

epsilon= 0.01, sigma=0.001,a=1.01

We want to study the probability distribution of inter-spikes time
in this different regimes.

Exit time of potential well

In this part, we study the equation (FHN) withβ = 0 andγ = 1:














εdxt =

(

xt −
x3

t

3
+ yt

)

dt +
√

εσ dWt

dyt = (α − yt)dt

(3)

epsilon= 0.01,sigma=0.03,a=−0.66

In the neighborhood of the Hopf bifurcation point, the equation
(3) come down to the study of the equation:

dxt = −1

ε
V ′(xt)dt +

σ√
ε
dWt

whereV is the potential:

V (x) = −δx +
1

3
x + γx4

Hereδ andγ are two real parameter which depend onα, x∗ andy∗.

x−
x+

L

Potential V with the particular abscissasx−,x+ andL

We will study the exit times of the neighborhood of Hopf bifur-
cation(x∗, y∗). It is the same to study the exit times of the potential
well (see [1]).

We defineτ as the first time of exit of the potential well by ab-
scissasx− or L:

τ = inf{t > 0 : xt ∈ {x−, L}}.

L is a positive large real(L >> 1).
We define the differential operatorL by:

L = −1

ε
V ′(x)

d

dx
+

σ2

2ε

d2

dx2

and the problems










(L − λ)uλ(x) = 0

uλ(x−) = k k = 1, 0

uλ(L) = 0

(PB)

Using Feyman-Kac formula, we obtain

uλ(x) = Ex

[

eλτx−Iτx−<τL

]

is solution of (PB) with k=1.

Proposition .The density ofτx−, the time of exit byτx−, follow an
asymptotically exponential law of parameter λ1 which is the first
eigenvalue of the problem (PB) withk = 0.

PROOF : We remark thatuλ(x) is Laplace transform of the density
of τx−. Thus, the density ofτx− is the inverse Laplace transform of
uλ(x).
The problem (PB) withk = 1 has a solution ifλ is not an eigenvalue
of the problem (PB) withk = 0.

We can estimate the value of the two first eigenvalue and have an
approximation of the eigenvaluesλn asn → ∞:

• λ1 =

√

|V ′′(x+)V ′′(x−)|
πε

exp

(

− 2

σ2
[V (x−) − V (x+)]

)

[

1 + O

(

exp
(

−2H/σ2
)

σ2

)]

asσ → 0

• λ2 ≥ Cσ2, asσ → 0. HereC is a constant independent ofσ.

As uλ is a meromorphic function, to calculate the inverse Laplace
transform, we have to estimate the residues of the functionλ 7→
uλe−tλ in the eigenvalues of the problem (PB) withk = 0:

(

L
−1uλ

)

(t) =
∑

λ∈{λ1,··· } Res(uλe−tλ, λ)

= λ1e
−λ1t[1 − σ2 + O

(

σ| log σ|2
)

] �
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