SPIKES PROBABILITY DISTRIBUTION IN FITZHUGH-NAGUMO MODEL

Introduction

We present here some results around the FitzHugh-Nagumo equation. The general model is a slow-fast system of stochastic differential equation:

Damien LANDON MAPMO, Université d'Orléans, France.

(2)

Spikes distribution

Now we add noise to the first line of the equation (1):

$$\begin{cases} \varepsilon dx_t = \left(x_t - \frac{x_t^3}{3} + y_t\right) dt + \sigma \sqrt{\varepsilon} dW_t \\ dy_t = (\alpha - \mathbf{x_t}) dt \end{cases}$$

Then we have four cases:

Exit time of potential well

In this part, we study the equation (FHN) with $\beta = 0$ and $\gamma = 1$:

$$\begin{cases} \varepsilon dx_t = \left(x_t - \frac{x_t^3}{3} + y_t\right) dt + \sqrt{\varepsilon}\sigma \, dW_t \\ dy_t = (\alpha - \mathbf{y_t}) dt \end{cases}$$
(3)

Here x is the fast variable and represents the membrane potential, y is the slow variable, α , β and γ are postive parameters, ε is a small positive parameter ($\varepsilon \ll 1$), σ is a small positive parameter ($\sigma \ll 1$) representing the noise amplitude of the Brownian Motion W_t .

In a first part, we begin studying the case of deterministic equation associated to (FHN) with $\beta = 1$ and $\gamma = 0$, following the value of the parameter α .

In a second part, we give numerical simulations on the solution of the equation (FHN) with $\beta = 1$ and $\gamma = 0$, function of the values of α and σ .

In a third part, we consider the equation (FHN) with $\beta = 0$ and $\gamma = 1$. This equation can be reduced to one-dimensional ODS. We study this ODS in the neighborhood of the equilibrium point.

Deterministic equation

We consider the deterministic equation associated to the SDE (FHN) in the case $\beta = 1$ and $\gamma = 0$:

(1)

• node : loops near the limit cycle. There is no change to the global solution.

• focus :

- weak noise : loops around the fixed point.

- stronger noise : loops around the fixed point and exit (right) from the neighborhood of the fixed point and loop on the limit cycle.

- strong noise : **loop near the limit cycle** (*left*).

In the neighborhood of the Hopf bifurcation point, the equation (3) come down to the study of the equation:

 $dx_t = -\frac{1}{\varepsilon}V'(x_t)dt + \frac{\sigma}{\sqrt{\varepsilon}}dW_t$

where V is the potential:

$$V(x) = -\delta x + \frac{1}{3}x + \gamma x^4$$

Here δ and γ are two real parameter which depend on α , x^* and y^* .

Potential V with the particular abscissas x_{-}, x_{+} and L

We will study the exit times of the neighborhood of Hopf bifurcation (x^*, y^*) . It is the same to study the exit times of the potential well (see [1]).

We define τ as the first time of exit of the potential well by abscissas x_{-} or L:

$\tau = \inf\{t > 0 : x_t \in \{x_-, L\}\}.$

First of all, we study the equilibrium point of the equation (1) given by $(x^*, y^*) = (\alpha, \frac{\alpha}{3} - \alpha)$. It is a Hopf bifurcation point. We have two cases:

• if $\alpha < \alpha_*$, the Jacobian matrix has two real eigenvalues. One of them is positive and we have a **stable node**.

• if $\alpha \geq \alpha_*$, the Jacobian matrix has two complex eigenvalues. The real part is negative and we have a **stable focus**.

Finally, we fix α and we plot the membrane potential x in function of the time t. We observe three different main regimes following the value of σ (see [2]) :

• numerous and regular spikes : the trajectory stay only a few times around the equilibrium point before exiting ($\sigma = 0.02$).

• spike or a cluster of spikes from time to time. That mean the trajectory stay some times around the equilibrium point before exiting and when it come back, it can sometimes exit quickly $(\sigma = 0.007)$

L is a positive large real (L >> 1). We define the differential operator \mathcal{L} by:

 $\mathcal{L} = -\frac{1}{\varepsilon} V'(x) \frac{d}{dx} + \frac{\sigma^2}{2\varepsilon} \frac{d^2}{dx^2}$

and the problems

$$\begin{cases} (\mathcal{L} - \lambda)u^{\lambda}(x) = 0\\ u^{\lambda}(x_{-}) = k \qquad k = 1, 0\\ u^{\lambda}(L) = 0 \end{cases}$$

Using Feyman-Kac formula, we obtain

$$u_{\lambda}(x) = \mathbb{E}_{x} \left[e^{\lambda \tau_{x_{-}}} \mathbb{I}_{\tau_{x_{-}} < \tau_{L}} \right]$$

is solution of (PB) with k=1.

Proposition. The density of $\tau_{x_{-}}$, the time of exit by $\tau_{x_{-}}$, follow an asymptotically exponential law of parameter λ_1 which is the first eigenvalue of the problem (PB) with k = 0.

PROOF: We remark that $u_{\lambda}(x)$ is Laplace transform of the density of $\tau_{x_{-}}$. Thus, the density of $\tau_{x_{-}}$ is the inverse Laplace transform of $u_{\lambda}(x).$

The problem (PB) with k = 1 has a solution if λ is not an eigenvalue of the problem (PB) with k = 0.

We can estimate the value of the two first eigenvalue and have an approximation of the eigenvalues λ_n as $n \to \infty$:

We want to study the probability distribution of inter-spikes time in this different regimes.

• $\lambda_1 = \frac{\sqrt{|V''(x_+)V''(x_-)|}}{\pi\varepsilon} \exp\left(-\frac{2}{\sigma^2}[V(x_-) - V(x_+)]\right)$ $\left[1 + O\left(\frac{\exp\left(-2H/\sigma^2\right)}{\sigma^2}\right)\right] \text{ as } \sigma \to 0$

• $\lambda_2 \ge C\sigma^2$, as $\sigma \to 0$. Here C is a constant independent of σ .

As u_{λ} is a meromorphic function, to calculate the inverse Laplace transform, we have to estimate the residues of the function $\lambda \mapsto$ $u^{\lambda}e^{-t\lambda}$ in the eigenvalues of the problem (PB) with k = 0:

 $\left(\mathfrak{L}^{-1}u^{\lambda}\right)(t) = \sum_{\lambda \in \{\lambda_1, \cdots\}} \operatorname{Res}(u^{\lambda}e^{-t\lambda}, \lambda)$ $= \lambda_1 e^{-\lambda_1 t} [1 - \sigma^2 + O\left(\sigma |\log \sigma|^2\right)]$

References

[1] N. BERGLUND and B. GENTZ Noise-Induces Phenomena in Slow-Fast Dynamical Systems. Springer, 2005.

[2] C. MURATOV and E. VANDEN-EIJENDEN. Noised-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit circle *Chaos*, 18, 2008.