SPIKES PROBABILITY DISTRIBUTION IN FITZHUGH-NAGUMO MODEL
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Introduction

We present here some results around the FitzHugh-Nagunae equ
tion. The general model is a slow-fast system of stochasteren-
tial equation:

3
edrs = (ajt — % + yt> dt + \/EO dWy

dyr = (a — Bxy — yyt) di

(FHN)

Herez Is the fast variable and represents the membrane potenial,
the slow variableg, 5 and~ are postive parametersis a small pos-
itive parameterd << 1), ¢ Is a small positive parametey (<< 1)
representing the noise amplitude of the Brownian Motign

In a first part, we begin studying the case of deterministicaeq
tion associated to (FHN) with = 1 and~ = 0, following the value
of the parametet.

In a second part, we give numerical simulations on the soiudf
the equation (FHN) withg = 1 and~ = 0, function of the values of
a ando.

In a third part, we consider the equation (FHN) with= 0 and
~ = 1. This equation can be reduced to one-dimensional ODS. We
study this ODS in the neighborhood of the equilibrium point.

Deterministic equation

We consider the deterministic equation associated to the SO
(FHN) in the cased = 1 and~ = 0:

EL = L —

ol

(1)

Y=o —

First of all, we study the equilibrium point of the equatidr) given

3
by (z*,y*) =

(v, % — «). Itis a Hopf bifurcation point. We have
two cases:

(D

o if a < a, the Jacobian matrix has two real eigenvalues. On
of them is positive and we havestable node

epsilon=0.01,a=0.9

o if & > a4, the Jacobian matrix has two complex eigenvaluesg.
The real part is negative and we havstable focus

epsilon=0.01,a=1.01
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Spikes distribution

Now we add noise to the first line of the equation (1):

3
edry = (ajt — % + yt> dt + O\/Eth

dy; = (o — x¢)dt

(2)

Then we have four cases:

e node :loops near the limit cycle There is no change to the
global solution.

e fOCUS :

- weak noise loops around the fixed point

- stronger noise loops around the fixed point and exit(right)
from the neighborhood of the fixed point and loop on the limit
cycle.

- strong noise loop near the limit cycle (left).

o= 0.05
epsilon=0.01,sigma=0.05,a=1.01

epsilon=0.01,sigma=0.006,a=1.01

epsilon=0.01,sigma=0.006,a=1.01

Finally, we fix @« and we plot the membrane potentialn function
of the timet. We observe three different main regimes following the
value ofo (see [2]) :

e NUuMerous and regular spikes. the trajectory stay only a few
times around the equilibrium point before exiting-€ 0.02).

e Spike or a cluster of spikesfrom time to time. That mean
the trajectory stay some times around the equilibrium pbeat
fore exiting and when it come back, it can sometimes exitlduic
(o = 0.007)

e rare isolated spikes(c = 0.001).

We want to study the probability distribution of inter-spgktime

In this different regimes.

[1] N. BERGLUND and B. GENTZ Noise-Induces Phenomena in Skast Dynamical System&pringer 2005.
[2] C. MURATOV and E. VANDEN-EIJENDEN. Noised-induced mokanode oscillations in a relaxation oscillator near thesbio$ a limit circle Chaos 18, 2008.

Exit time of potential well

In this part, we study the equation (FHN) with= 0 and~ = 1:

3
edxrs = (azt — % + yt> dt + \/EJ dWy

dyt = (o — y¢)dt

3)

In the neighborhood of the Hopf bifurcation point, the etpat
(3) come down to the study of the equation:

1 o
dy = —=V'(24)dt + —=dW
Tt - (z¢)dt + VR

whereV is the potential:

1
—0x + =x + 7:1:4

Vix) = ;

Hered and~ are two real parameter which dependamn:™ andy™.

X+

Potential V with the particular abscissas,z+ andLL

We will study the exit times of the neighborhood of Hopf biur
cation(z*, y*). Itis the same to study the exit times of the potential
well (see [1]).

We definer as the first time of exit of the potential well by ab-
scissas_— or L:

T = inf{t > 0: x4 € {x_,L}}.

L is a positive large redll. >> 1).
We define the differential operatdrby:

and the problems

(PB)

Using Feyman-Kac formula, we obtain

uy(z) = Ey {e)‘Tf]ITx<TL}
IS solution of (PB) with k=1.

Proposition . The density of,. , the time of exit by, , follow an
asymptotically exponential law of parameter A; which is the first
eigenvalue of the problem (PB) with= 0.

PROOF : We remark that.)(x) is Laplace transform of the density
of 7, . Thus, the density of, Is the inverse Laplace transform of
uy(x).
The problem (PB) withk = 1 has a solution IfA is not an eigenvalue
of the problem (PB) withk = 0.

We can estimate the value of the two first eigenvalue and have a
approximation of the eigenvalueg asn — oo:
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e \y > Co?, aso — 0. HereC is a constant independent of

As uy Is a meromorphic function, to calculate the inverse Laplace
transform, we have to estimate the residues of the function
u?e~ ! in the eigenvalues of the problem (PB) with= 0:

(£71) () = Taeqa, ) Res(wle ™0

= A\e M1 —02+0 (o] log o?)] _



